

Investigation of Effect on Stresses in Rotating Disc with Non Central Circular Holes

Ashvin Deogade

Assistant Professor, Datta Meghe Institute of Engg., Tech. & Research, Sawangi, Wardha, Maharashtra

(India)

Corresponding Author:- ashvin_d@rediffmail.com

ABSTRACT:

In the present work the problem of circular disc with a central hole and a symmetrical array of non-central holes subjected to rotation are analysed using Finite Element Method. The Stress Concentration Factors (SCF) is derived for various geometric parameters like, R2/R1, d/2R1, R_b / (R2-R1) and number of holes (N). It is seen that, as the number of holes increases, the SCF decreases. The results are compared with the analytical solution given by H.E.Ang and C.L.Tan.

KEYWORDS: Disc, Non central hole, Stress concentration, FEM **NOTATION**

A, B, C - positions at edges of holes shown in fig.1.

- R1 Radius of central hole (bore) of disc
- R2 Outer radius of disc
- R_b Pitch circle radius of holes
- d Hole diameter
- N Number of holes
- E Modulus of Elasticity
- υ Poisson's ratio
- ρ Density of material
- ω Angular velocity of disc
- σ_{θ} Hoop stress or tangential stress
- σ_r Radial stress

 $(\sigma_{\theta})_{A}$ - Hoop stress at point A

 $(\sigma_{\theta})_{B}$ - Hoop stress at point B

1. INTRODUCTION

There are machines elements which rotate while performing the required functions. These include flywheels, thin rings, circular discs, pulley rims, cylinders and spherical shells. Due to rotation, centrifugal stresses are developed in these elements. Rotating disc shown in fig.1 found in numerous industrial applications. High centrifugal stresses, radial and hoop stresses occur at the non- central holes needed to bolt discs together rotating at high speed, such as compressor and turbine rotors of aircraft engines, flywheel, gears, etc.

In the present work the problem of circular disc with a central hole and a symmetrical array of non-central holes subjected to rotation is analysed by using Finite Element Method (FEM).

The finite element approach is used to evaluate the stresses in the rotating disc with central hole by varying R_2/R_1 , $d/2R_1$, $R_b/(R_2-R_1)$ and number of holes (N) and to study the effect of variation of these parameters in the stress concentration factor in the disc.

2. INTRODUCTION TO PROBLEM

In this project, effect of non-central holes in disc with central hole is investigated considering various geometrical parameters of the disc. The disc is shown in fig.1.

Fig.1. Circular disc with a central hole and a symmetrical array of non-central holes

International Journal of Topical Areas in Mechanical Engineering (IJTAME) Volume 1, Issue 1, September 2020, ISSN:

The various geometric parameter ratios & their variation are as follows, $R_2 / R_1 = 3, 4, 5, 6, 7, 8, 9, 10$ $d / 2R_1 = 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25$ $R_b/(R_2 - R_1) = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0$ N = 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 36, 40The dise is made up of steel and its machined properties are tabulated in Tab

The disc is made up of steel and its mechanical properties are tabulated in Table.1.

Modulus of elasticity (MPa)	Е	200x103
Poisson's Ratio	ν	0.3
Density of material (Kg/mm ³)	ρ	7800

Table 1: Properties of Material

3. VARIATION OF SCF WITH RESPECT TO GEOMETRICAL PARAMETERS EVALUATED BY FE APPROACH

Principal stress contours for some ratios R_2/R_1 , $R_b/(R_2-R_1)$, $d/2R_1$, N are shown in fig.2 to fig.5 as an illustration.

Fig.2: Principal Stress	Fig.3: Principal	Stress	Fig.4: Principa	al Stress	Fig.5:
Principal Stress			6 1		U
Contour (σ_{θ}) for R_2/R_1	Contour (σ_{θ}) for	$R_2/R_1=3$,	Contour (σ_{θ}) for	or $R_2/R_1 =$	
Contour (σ_{θ}) for $R_2/R_1=4$,			`		
$=3, R_{b}/(R_{2}-R_{1})=0.8,$	$R_b/(R_2-R_1)=0.9, d/2R_1=$	$4, R_{b}/$	$(R_2 - R_1) = 0.8,$	$R_b/(R$	-2-
R_1)=1,d/2 R_1 =0.25,					
$d/2R_1 = 0.2, N = 24$	0.225 , N=4	$d/2R_{1}$ =	=0.2, N=4	N=3	36
An effort is made to show the	variation of SCF with respe	ect to geometr	ical parameter of	disc i, e, R _b	$/(R_2-R_1),$
R_2/R_1 , $d/2R_1$ and number of ho	oles (N). These variations as	re shown in F	ig.6 to Fig. 13.		
5.5 4.5 3.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 3.5 3 2.5		R _b /	(R_2-R_1) -0.4 0.5 0.6 -0.7

Fig.8: Variation of SCF with Respect to Number of Holes for $R_2/R_1=5$

Fig.10: Variation of SCF with Respect to Number of Holes for $R_2/R_1=7$

Fig.12: Variation of SCF with Respect to Number of Holes for $R_2/R_1=9$

Fig.9: Variation of SCF with Respect to Number of Holes for $R_2/R_1=6$

Fig11: Variation of SCF with Respect to Number of Holes for $R_2/R_1=8$

Fig.13: Variation of SCF with Respect to Number of Holes for $R_2/R_1=10$

4. COMPARISON OF FE RESULTS WITH ANALYTICAL RESULTS REPORTED BY H.E. ANG & C.L.TAN

The physical geometries and SCF given by H.E.ANG and C.L.TAN and evaluated by FE approach are given in Table 2 and Table 3 for the ratio of $d/2R_1=0.05$ and $d/2R_1=0.075$.

D (R _b /		1/			$\sigma_{\theta} FEM$			T 7
R ₂ / R ₁	(R ₂ - R ₁)	R _b	d/ 2R ₁	d	Ν	pt. A (MPa)	σ_{θ} (MPa)	K _A	K _A The. ^{\$}
					20	485.858	260.032	1.868	1.243
					24	498.441	260.032	1.916	1.220
					28	471.526	260.032	1.813	1.197
	0.0	24	0.05		32	476.938	260.032	1.834	1.174
	0.0	24	0.05	Z	36	460.247	260.032	1.769	1.151
					40	460.83	260.032	1.772	1.128
					20	464.486	260.032	1.786	1.163
					24	436.965	260.032	1.680	1.143
					28	471.523	260.032	1.813	1.124
	07	20	0.05	0	32	414.451	260.032	1.593	1.104
	0.7	28	0.05	2	36	397.778	260.032	1.529	1.084
					40	390.733	260.032	1.502	1.065
					20	402.29	260.032	1.547	1.080
3					24	397.121	260.032	1.527	1.063
					28	373.352	260.032	1.435	1.047
	0.0	22	0.05	0	32	365.164	260.032	1.404	1.031
	0.8	32	0.05	2	36	354.958	260.032	1.365	1.015
					40	343.583	260.032	1.321	0.998
					20	721.946	457.622	1.577	1.192
	0.5	20	0.05	2	24	699.263	457.622	1.528	1.176
	0.5	30	0.05	2	28	706.564	457.622	1.543	1.160

					32	714.737	457.622	1.561	1.143
					20	685.121	457.622	1.497	1.099
					24	625.976	457.622	1.367	1.086
	0.6	26	0.05		28	656.061	457.622	1.433	1.074
					32	622.804	457.622	1.360	1.061
	0.6	30	0.05	2	36	602.582	457.622	1.316	1.049
					40	572.771	457.622	1.251	1.036
					20	608.248	457.622	1.329	1.017
4					24	599.54	457.622	1.310	1.007
	0.7	40	0.05	2	28	560.41	457.622	1.224	0.997
					32	541.045	457.622	1.182	0.9876
	0.7	42	0.05	Z	36	530.183	457.622	1.158	0.9778
					40	528.798	457.622	1.155	0.968
					20	552.879	457.622	1.208	0.9425
					24	547.907	457.622	1.197	0.9342
	0.9	40	0.05	2	28	546.596	457.622	1.194	0.9260
					32	537.205	457.622	1.173	0.9177
	0.8	48	0.05	Z	36	509.025	457.622	1.112	0.9095
					40	490.968	457.622	1.072	0.9013

Table 2: Comparison of FE and Analytical Results for d/2R1=0.05

D (R _b /		1/			$\sigma_{\theta} FEM$	σ_{θ}		TZ I
R ₂ / R ₁	(R ₂ - R ₁)-	R _b	d/ 2R ₁	d	Ν	pt. A (MPa)	THEO. (MPa)	K _A	K _A The. ^{\$}
				-	20	485.858	260.032	1.8684	1.2477
	0.6	24	0.075	3	24	498.441	260.032	1.9168	1.2081
		•	0.077		20	464.486	260.032	1.7862	1.153
2	0.7	28	0.075	3	24	436.965	260.032	1.6804	1.1174
3	0.0				20	402.29	260.032	1.5470	1.0751
	0.8	32	0.075	3	24	397.121	260.032	1.5271	1.0448
					20	721.946	457.622	1.5776	1.1658
					24	699.263	457.622	1.5280	1.1362
	0.5	30	0.075	3	28	706.564	457.622	1.5439	1.1066
					32	714.737	457.622	1.5618	1.0771
					20	685.121	457.622	1.4971	1.0778
					24	625.976	457.622	1.3678	1.0548
	0.6	36	0.075	3	28	656.061	457.622	1.4336	1.0318
					32	622.804	457.622	1.3609	1.0089
					20	608.248	457.622	1.3291	1.0009
					24	599.54	457.622	1.3101	0.9811
	0.7	42	0.075	3	28	560.41	457.622	1.2246	0.9614
4					32	541.045	457.622	1.1822	0.9417
					20	552.879	457.622	1.2081	0.9299
					24	547.907	457.622	1.1972	0.9130
	0.8	48	0.075	3	28	546.596	457.622	1.1944	0.8962
					32	537.205	457.622	1.1739	0.8793

Table 3: Comparison of FE and Analytical Results for the $d/2R_1=0.075$ \$ - Stress Concentration Factor reported by H.E. Ang and C.L. Tan.

It is seen from the Table 2 & 3 that the SCF determined by FE approach and with analytical approach differ by 62 to 84%. This confirms that the analytical solution represented C.L.Tan and H.E.Ang may need some correction factors depend upon geometry of perforated disc. Hence, it can be suggested that the analytical approach may needs some refinement to predict the actual SCF in perforated disc.

5. DISCUSSION AND CONCLUSION

1. It is observed that as the number of holes increases the SCF decreases for most cases. But for some cases it is observed that the SCF increases abruptly after certain number of holes. This may be due to very less pitch width between the two consecutive holes. Thus there is a limit for the maximum number of holes to

keep the working stresses within safe limits.

2. As it is also seen that as the pitch circle radius of non-central holes increases, the SCF decreases. Thus the non-central holes very close to the central hole should be avoided in practice.

3. As the diameter of non-central holes increases the SCF decreases. This may be due to the smoothening of stress lines over larger curvature of hole. Thus larger diameter of non-central hole is preferred in actual practice.

4. Stress Concentration Factors derived for various geometric parameters like, R_2/R_1 , $d/2R_1$, $R_b/(R_2-R_1)$ and number of holes (N) can serve as a guideline for designing the perforated rotating disc.

5. REFERENCES

- 1. H.E.Ang and C.L.Tan, 'Stress Concentration at Holes in Thin Rotating Discs', Journal of Strain Analysis Vol.23, No.4, P. No. 223-225,1988
- 2. FESSLER, H. and THORPE, T. E. 'Optimization of Stress Concentrations in Rotating Discs', Journal of Strain Analysis, Vol.2, P.No.152-358,1967
- 3. FESSLER, H. and THORPE, T. E. 'Reinforcement of Non-central Holes in Rotating Discs', Journal of Strain Analysis, Vol.2, P.No.317-323, 1967
- 4. H.E.Ang and C.L.Tan, 'Stress Intensity Factors for Cracks at Holes in Thin Rotating Discs', International Journal of Fracture, 40, P.No.R3-R11, 1989.
- 5. TAN, C. L. and FENNER, R. T. 'Elastic Fracture Mechanics by the Boundary Integral Equation Method', Proc. R. Soc. Lond., A369, P. No. 243-260, 1979